Jumat, 14 Juli 2017

Tugas Softskill (Review Jurnal)

Pengaruh Perubahan Arus Saluran Terhadap Tegangan Tarik dan Andongan pada Sutet 500 KV di Zona Krian

Abstrak

            Saluran transmisi udara umumnya menggunakan konduktor jenis ACSR (Alumunium Conductor Steel Reinforced) yang memiliki batas temperatur kerja yang diizinkan sebesar 90C. Mempertimbangkan peningkatan kebutuhan tenaga listrik yang pesat akhir-akhir ini, maka usaha untuk meningkatkan kapasitas saluran transmisi dilakukan dengan mengoptimalkan kapasitas hantaran arus dari saluran transmisi yang telah ada. Permasalahan utama dari peng-optimalan saluran transmisi tersebut adalah tegangan tarik dan andongan yang timbul pada konduktor tersebut menjadi lebih besar, oleh karena itu penelitian ini bertujuan untuk mengetahui karakteristik perubahan arus saluran terhadap tegangan tarik dan andongan konduktor, dengan demikian diharapkan dari hasil penelitian ini akan berguna untuk membangun struktur konstruksi saluran transmisi yang sesuai dengan sifat dari konduktor tersebut. Sebagai model simulasi digunakan saluran transmisi tegangan ekstra tinggi 500 kV jalur Paiton-Krian dengan menggunakan data-data konduktor ACSR yang sesuai dengan yang ada di lapangan. Temperatur konduktor dihitung berdasarkan persamaan keseimbangan panas. Metode Ruling Span digunakan untuk menentukan panjang span equivalen. Sementara itu metoda Catenary digunakan untuk menghitung tegangan tarik dan andongan konduktor tersebut. Berdasarkan hasil dari penelitian ini dapat disimpulkan bahwa dengan adanya perubahan arus saluran dari 10 Ampere menjadi 850 Ampere mengakibatkan terjadinya peningkatan temperatur konduktor sebesar 125.94 % dan penurunan tegangan tarik sebesar 36.38 % serta terjadi peningkatkan pada andongan sebesar 26.82 %.

Senin, 26 Desember 2016

Prosesor Paralel

Paralel Prosesor adalah suatu prosesor dimana pelaksanaan instruksinya secara bersamaan waktunya.
Sehingga menyebabkan pelaksanaan suatu kejadian :
1. Dlam interval waktu yang sama
2. Dalam dalam waktu yang bersamaan
3. Dalam waktu yang saling tumpang tindih

Pada prosesor paralel memiliki beberapa teknik pemrosesan :
1. Pipelining
2. Unit-unit fungsional berganda
3. Tumpang tindih antara operasi CPUdan I/O
4. Interleaving memori
5. Multiprograming
6. Multiprosesing

1. Jaringan Interkoneksi
Ada 5 komponen
1. CPU
2. Memori
3. Interface : peralatan yang yangnmembawa pesanmasuk dan keluar dari CPU danMemori
4. Penghubung : saluran fisik yang dilalui bit-bituntuk berpindah tempat
5. Switch : peralatan yang memiliki banyak portinput dan port output
Komunikasi diantara terminal-terminal yang berbeda harus dapat dilakukan dengan suatu media tertentu. Interkoneksi yang efektif antara prosesor dan modul memorisangat penting dalam lingkungan komputer. Menggunakan arsitektur bertopologi  busbukan merupakan solusi yang praktis karena bus hanya sebuah pilihan yang baik ketika digunakan untuk menghubungkan komponen-komponen dengan jumlah yang sedikit. Jumlah komponen dalam sebuah modul IC bertambah seiring waktu. Oleh karena itu, topologi  bus bukan topologi yang cocok untuk kebutuhan interkoneksi komponenkomponen di dalam modul IC. Selain itu juga tidak dapat diskalakan, diuji, dan kurang dapat disesuaikan, serta menghasilkan kinerja toleransi kesalahan yang kecil. Di sisi lain, sebuah  crossbar menyediakan interkoneksi penuh diantara semua terminal dari  suatu  sistem  tetapi  dianggap sangat kompleks, mahal untuk membuatnya, dan sulit untuk dikendalikan. Untuk alasan ini jaringan interkoneksi merupakan solusi media komunikasi yang baik untuk sistem komputer dan telekomunikasi. Jaringan ini membatasi jalur-jalur diantara terminal komunikasi yang berbeda untuk mengurangi kerumitan dalam menyusun elemen switching

2. Mesin SIMD & Mesin MMID

Mesin SIMD
SIMD adalah singkatan dari “Single Instruction, Multiple Data”, merupakan tentang sebuah istilah dalam komputasi yang akan merujuk kepada sekumpulan  operasi yang digunakan untuk menangani jumlah data yang sangat banyak dalam paralel secara efisien, seperti yang terjadi dalam prosesor vektor atau prosesor larik. SIMD pertama kali dipopulerkan pada super komputer skala besar, meski sekarang telah ditemukan pada komputer pribadi. Contoh aplikasi yang dapat mengambil keuntungan dari SIMD adalah aplikasi yang memiliki nilai yang sama yang ditambahkan ke banyak titik data (data point), yang umum terjadi dalam aplikasi multimedia. Salah satu contoh operasinya adalah mengubah brightness dari sebuah gambar. Setiap  dari sebuah gambar 24-bit berisi tiga buah nilai berukuran 8-bit brightness dari porsi warna merah (red), hijau (green), dan biru (blue). Untuk melakukan perubahan brightness, nilai R, G, dan B akan dibaca dari memori, dan sebuah nilai baru ditambahkan (atau dikurangkan) terhadap nilai-nilai R, G, B tersebut dan nilai akhirnya akan dikembalikan (ditulis kembali) ke memori.

Prosesor yang memiliki SIMD menawarkan dua keunggulan, yakni:
Data langsung dapat dipahami dalam bentuk blok data, dibandingkan dengan beberapa data yang terpisah secara sendiri-sendiri. Dengan menggunakan blok data, prosesor dapat memuat data secara keseluruhan pada waktu yang sama. Daripada melakukan beberapa instruksi "ambil pixel ini, lalu ambil pixel itu, dst", sebuah prosesor SIMD akan melakukannya dalam sebuah instruksi saja, yaitu "ambil semua pixel itu!" (istilah "semua" adalah nilai yang berbeda dari satu desain ke desain lainnya). Jelas, hal ini dapat mengurangi banyak waktu pemrosesan (akibat instruksi yang dikeluarkan hanya satu untuk sekumpulan data), jika dibandingkan dengan desain prosesor tradisional yang tidak memiliki SIMD (yang memberikan satu instruksi untuk satu data saja). Sistem SIMD umumnya hanya mencakup instruksi-instruksi yang dapat diaplikasikan terhadap semua data dalam satu operasi. Dengan kata lain, sistem SIMD dapat bekerja dengan memuat beberapa titik data secara sekaligus, dan melakukan operasi terhadap titik data secara sekaligus.

Mesin MMID
MIMD adalah sebuah singkatan dari, "Multiple Instruction Stream-Multiple Data Stream" yaitu sebuah komputer yang memiliki beberapa prosesor yang bersifat otonomus yang mampu melakukan instruksi yang berbeda pada data yang berbeda. Sistem terdistribusi umumnya dikenal sebagai MIMD, entah itu menggunakan satu ruangan memori secara bersama-sama atau sebuah ruangan memori yang terdistribusi. Pada sistem komputer MIMD murni terdapat interaksi di antara pemrosesan. Hal ini disebabkan seluruh aliran dari dan ke memori berasal dari space data yang sama bagi semua pemroses. Komputer MIMD bersifat tightly coupled jika tingkat interaksi antara pemroses tinggi dan disebut loosely coupled jika tingkat interaksi antara pemroses rendah.

3. Arsitektur Pengganti

Dalam bidang teknik computer, arsitektur pengganti merupakan konsep perencanaan atau struktur pengoperasian dasar dalam computer atau bisa dikatakan rencana cetak biru dari deskripsi fungsional kebutuhan dari perangkat keras yang didesain, implementasi perencanaan dari masing-masing bagian seperti CPU, RAM, ROM, Memory Cache, dll.

Pipelining dan RISC

Pemrosesan pipeline dalam suatu komputer diperoleh dengan membagi suatu fungsi yang akan dijalankan menjadi beberapa subfungsi yang lebih kecil dan merancang perangkat keras yang terpisah, disebut sebagai tingkatan (stage), untuk setiap subfungsi. Stage-stage itu kemudian dihubungkan bersama-sama dan membentuk sebuah pipeline tunggal (atau pipe) untuk menjalankan fungsi asli tersebut.
1. Sejajarkan mantissa-mantissa yang ada
2. tambahkan mantissa-mantissa tersebut
3. Normalisasikan hasilnya
Keuntungan proses penambahan secara pipeline ini adalah bahwa dua input yang baru dapat dimulai melalui pipa tersebut segera sesudah dua input sebelumnya melewati stage 2. Hal ini berarti bahwa jumlah penambahan akan tersedia dengan kecepatan yang sama dengan kecapatan input. Secara sistematis sekumpulan angka floating-point akan bergerak melalui penambah (adder) pipeline yang sederhana pada saat pasangan pertama angka-angka itu dihasilkan oleh stage 3 maka pasangan kedua telah disejajarkan dan ditambahkan dan hanya perlu dinormalisir pada stage 3. Dengan menggunakan pipeline, jumlah selisih waktu antara hasil pertama dan kedua merupakan jumlah waktu yang diperlukan untuk menormalisir sebuah angka.Tanpa suatu pipeline, waktu antara hasil-hasil tersebut merupakan waktu kumulatif yang diperlukan untuk semua ketiga subfungsi tersebut.
Sinkronisasi Pada Pipeline
Meskipun kita dapat memisahkan suatu fungsi menjadi beberapa subfungsi dengan waktu proses yang relatif sama, perbedaan logika dari stiap stage akan menyukarkan kita untuk menghasilkan waktu proses yang sama pada setiap stage. Untuk menyamakan waktu yang diperlukan pada setiap stage maka stage-stage tersebut harus disinkronisasikan. Hal ini bisa dilakukan dengan menyisipkan kunci-kunci (latch) sederhana (register cepat), antara stage-stage tersebut.latch, masing-masing pada bagian pipe paling awal dan satu lagi pada bagian paling akhir untuk memaksa input yang sinkron dan memastikan output yang sinkron.
Waktu yang diperlukan untuk lewat dari suatu latch melalui stage ke latch berikutnya disebut sebagaipenangguhan clock (clock delay) dan diperlihatkan pada gambar dibawah ini. Karena hanya ada satu keseragaman penangguhan clock untuk seluruh pipeline maka latch disinkronkan sesuai dengan waktu proses maksimum pada masing-masing stage individual dalam pipeline tersebut. Klasifikasi Pipeline.
Pipeline dapat dikelompokkan menrut fungsi dan konfigurasinya. Secara fungsional, mereka diklasifikasikan menjadi tiga kelompok pokok yaitu: pipelineing aritmatika, instruksi dan prosesor. Pipeline menurut konfigurasi dan strtegi kendalinya: unifungsi atau multifungsi; statis atau dinamis; skalar atau vektor.

Klasifikasi Berdasarkan Fungsi
Pipelining aritmatika. Proses segmentasi dari ALU dari sistem yang muncul dalam kategori ini. Suatu contoh daari fungsi pipeline aritmatika diberikan dalam bagian contoh pipeline multifungsi.
Pipelining instruksi.Dalam suatu komputer nonpipeline, CPU bekerja melalui suatu siklus yang berkesinambungan dari fetch-decode-eksekusi untuk semua instruksinya. Proses fetch suatu instruksi tidak akan dimulai sampai eksekusi instruksi sebelumnya selesai. Untuk mem-pipeline fungsi ini, instruksi-instruksi yang berdampingan di fetch dari memori ketika instruksi yang sebelumnya di-decode dan dijalankan. Proses pipelining instruksi, disebut juga instruction lihat-ke-muka (look-ahead), mem-fetch instruksi secara berurutan.
Dengan demikian, jika suatu instruksi menyebabkan percabganan keluar dari urutan itu maka pipe akan dikosongkan dari seluruh instruksi yang telah di-fetch sebelumnya dan instruksi percabangan (branched-to instruction) tersebut di-fetch. Pipelining prosesor. Sewaktu stage dari suatu pipeline merupakan prosesor aktual dan latch-latch saling berbagi memori antara prosesor-prosesor tersebut maka pipeline itu disebut sebagai pipeline prosesor.

Prosedur Vektor Pipelining
Mengambil intruksi dan membufferkanya.
-          Ketika tahapan kedua bebas tahapan pertama mengirimkan instruksi yang dibufferkan tersebut.
-           Pada saat tahapan kedua sedang mengeksekusi instruksi, tahapan pertama memanfaatkan siklus memori yang tidak dipakai untuk mengambil dan membuffferkan instruksi berikutnya.
-          Tiga kesulitan yang sering dihadapi ketika menggunakan teknik pipeline.
-          Terjadinya penggunaan resource yang bersamaan
-          Ketergantungan terhadap data pengaturan jump ke suatu lokasi memori.
Reduced Instruction Set Computers (RISC)
RISC, yang jika diterjemahkan berarti "Komputasi Kumpulan Instruksi yang Disederhanakan", merupakan sebuah arsitektur komputer atau arsitektur komputasi modern dengan instruksi-instruksi dan jenis eksekusi yang paling sederhana. Arsitektur ini digunakan pada komputer dengan kinerja tinggi, seperti komputer vektor. Selain digunakan dalam komputer vektor, desain ini juga diimplementasikan pada prosesor komputer lain, seperti pada beberapa mikroprosesor Intel 960, Itanium (IA64) dari Intel Corporation, Alpha AXP dari DEC, R4x00 dari MIPS Corporation, PowerPC dan Arsitektur POWER dari International Business Machine. Selain itu, RISC juga umum dipakai pada Advanced RISC Machine (ARM) dan StrongARM (termasuk di antaranya adalah Intel XScale), SPARC dan UltraSPARC dari Sun Microsystems, serta PA-RISC dari Hewlett-Packard.

Selain RISC, desain Central Processing Unit yang lain adalah CISC (Complex Instruction Set Computing), yang jika diterjemahkan ke dalam Bahasa Indonesia berarti Komputasi Kumpulan Instruksi yang kompleks atau rumit.

Arsitektur Family Komputer IBM PC

IBM (International Business Machines) merupakan sebuah perusahaan hardware yang mengembangkan software – software yang sudah ada seperti UNIX dan WINDOWS. Oleh karena itu IBM sendiri merupakan sebuah perusahaan bukan system operasi, hanya saja IBM mencoba mengembangkan OS yang telah ada seperti OS dari UNIX dan LINUX.IBM PC adalah sebutan untuk keluarga komputer pribadi buatan IBM. IBM PC diperkenalkan pada 12 Agustus 1981, dan "dipensiunkan" pada tanggal 2 April 1987. Sejak diluncurkan oleh IBM, IBM PC memiliki beberapa keluarga, yakni :
·       IBM 4860 PCjr
·      IBM 5140 Convertible Personal Computer (laptop)
·      IBM 5150 Personal Computer (PC yang asli)
·      IBM 5155 Portable PC (sebenarnya merupakan PC XT yang portabel)
·     IBM 5160 Personal Computer/eXtended Technology

IBM 5162 Personal Computer/eXtended Technology Model 286 (sebenarnya merupakan PC AT)
·    IBM 5170 Personal Computer/Advanced Technology

Berikut ini adalah komponen IBM PC :
·   Sistem kontrol BUS : Pengontrol BUS, Buffer Data, dan Latches Alamat
·    Sistem kontrol interuppt : Pengontrol Interuppt
·    Sistem kontrol RAM & ROM : Chip RAM & ROM, Decoder Alamat, dan Buffer
·    Sistem kontrol DMA : Pengontrol DMA
·    Timer : Timer Interval Programmable
·    Sistem kontrol I/O : Interface Paralel Programmable

Konfigurasi microcomputer dasar
Berdasarkan UkurannyaBerdasarkan ukurannya, komputer digolongkan ke dalam micro computer (komputer mikro), mini computer (komputer mini), small computer (komputer kecil), medium computer (komputer menengah), large computer (komputer besar) dan super computer (komputer super).1.Micro ComputerMicro Computer (Mikro Komputer) disebut juga dengan nama personal computer (komputer personal) . ukuran main memory komputer mikro sekarang berkisar dari 16 MB sampai lebih dari 128 MB, dengan konfigurasi operand register 8 bit, 16 bit, atau 32 bit. Kecepatan komputer mikro sekarang berkisar 200 Mhz sampai dengan 500 Mhz.
Komputer mikro umumnya adalah single-user (pemakainya tunggal), yaitu satu komputer hanya dapat digunakan untuk satu pemakai saja untuk tiap saat.
1.      Chipset adalah set dari chip yang mendukung kompatibel yang mengimplementasikan berbagai fungsi tertentu seperti pengontrol interupt, pengontrol bus dan timer.
2.      Chip khusus yang di sebut koprosesor yang beroperasi bersama dengan CPU guna meningkatkan fungsionalitasnya

Sistem software
Agar user dapat memasukkan dan menjalankan program aplikasi, maka komputer harus sudah berisi beberapa software sistem dalam memori-nya. Software sistem adalah kumpulan program yang dieksekusi seperlunya untuk menjalankan fungsi seperti :
·         Menerima dan menginterpretasikan perintah user
·         Memasukkan dan tnengedit program aplikasi dan rnenyimpannya sebagai file dalam peralatan penyimpanan sekunder
·         Mengatur penyimpanan dan pengambilan file dalam peralatan penyimpanan sekunder
·         Menjalankan program aplikasi standar seperti word processor, spreadsheet, atau game, dengan data yang disediakan oleh user
·         Mengontrol unit I/O untuk menerima informasi input dan menghasilkan output
·         Mentranslasikan program dari bentuk source yang disediakan oleh user menjadi bentuk objek yang berisi instruksi mesin
·         Menghubungkan dan menjalankan program aplikasi user-written dengan rutin library standar yang ada, seperti paket komputasi numerik

Software sistem-lah yang bertanggungjawab untuk koordinasi semua aktifitas dalam sistem komputasi. Tujuan bagian ini adalah untuk memperkenalkan beberapa aspek dasar software sistem.
Manfaat IBM PC
1.         Kemudahaan penggunaan
2.         Daya Tempa
3.         Daya Kembang

4.         Expandibilitas

Unit Input/Output

1.      SistemBus
Bus adalah Jalur komunikasi yang dibagi pemakai Suatu set kabel tunggal yang digunakan untuk menghubungkan berbagai subsistem. Karakteristik penting sebuah bus adalah bahwa bus merupakan media transmisi yang dapat digunakan bersama. Sistem komputer terdiri dari sejumlah bus yang berlainan yang menyediakan jalan antara dua buah komponen pada bermacam-macam tingkatan hirarki sistem komputer.
Suatu Komputer tersusun atas beberapa komponen penting seperti CPU, memori, perangkat Input/Output. setiap computer saling berhubungan membentuk kesatuan fungsi. Sistem bus adalah penghubung bagi keseluruhan komponen computer dalam menjalankan tugasnya. Transfer data antar komponen komputer sangatlah mendominasi kerja suatu computer. Data atau program yang tersimpan dalam memori dapat diakses dan dieksekusi CPU melalui perantara bus, begitu juga kita dapat melihat hasil eksekusi melalui monitor juga menggunakan system bus.

2.      Standart Input/ Output Interface
Ketika suatu aplikasi ingin membuka data yang ada dalam suatu disk, sebenarnya aplikasi tersebut harus dapat membedakan jenis disk apa yang akan diaksesnya. Untuk mempermudah pengaksesan, sistem operasi melakukan standarisasi cara pengaksesan pada peralatan I/O. Pendekatan inilah yang dinamakan interface aplikasi I/O.
Interface aplikasi I/O melibatkan abstraksi, enkapsulasi, dan software layering. Abstraksi dilakukan dengan membagi-bagi detail peralatan-peralatan I/O ke dalam kelas-kelas yang lebih umum. Dengan adanya kelas-kelas yang umum ini, maka akan lebih mudah untuk membuat fungsi-fungsi standar (interface) untuk mengaksesnya. Lalu kemudian adanya device driver pada masing-masing peralatan I/O, berfungsi untuk enkapsulasi perbedaan-perbedaan yang ada dari masing-masing anggota kelas-kelas yang umum tadi. Device driver mengenkapsulasi tiap -tiap peralatan I/O ke dalam masing-masing 1 kelas yang umum tadi (interface standar). Tujuan dari adanya lapisan device driver ini adalah untuk menyembunyikan perbedaan-perbedaan yang ada pada device controller dari subsistem I/O pada kernel. Karena hal ini, subsistem I/O dapat bersifat independen dari hardware.
Karena subsistem I/O independen dari hardware maka hal ini akan sangat menguntungkan dari segi pengembangan hardware. Tidak perlu menunggu vendor sistem operasi untuk mengeluarkan support code untuk hardware-hardware baru yang akan dikeluarkan oleh vendor hardware.

3.      Pengaksesan peralatan input/output

Input / Output tergantung pada perspektif mengubah sinyal-sinyal bahwa pengguna manusia bisa melihat atau membaca. Untuk pengguna proses membaca atau melihat representasi ini adalah menerima masukan. Interaksi antara komputer dan manusia dipelajari dalam bidang yang disebut interaksi manusia-komputer. CPU dan memori utama dianggap sebagai otak dari komputer, dan dari sudut pandang adanya transfer informasi dari atau ke kombinasi itu, misalnya untuk atau dari disk drive, dianggap Input / Output. CPU dan sirkuit pendukungnya menyediakan memori-mapping Input / Output yang digunakan dalam pemrograman komputer tingkat rendah dalam pelaksanaan driver perangkat. Sebuah Input / Output merupakan salah satu algoritma yang dirancang untuk mengeksploitasi lokalitas dan melakukan efisien bila berada pada penyimpanan data sekunder, seperti disk drive.

Minggu, 06 November 2016

CPU

  *CPU

CPU ( Central Processing Unit ) merupakan perangkat keras computer yang memiliki fungsi untuk menerima dan melaksanakan perintah dan data dari perangat lunak. CPU merupakan otak dari computer. Tanpa adanya CPU, maka computer tidak akan berfungsi sebagai mestinya. CPU memiliki fungsi untuk menjalankan program yang telah disimpan dalam memori utama, dengan cara mengambil intruksi kemudian menguji intruksi dan mengeksekusinya sesuai alur perintah.

Fungsi  dari CPU :

-CPU akan mengatur dan mengendalikan alat-alat input output.
-CPU mampu mengambil intruksi-intruksi dari memori utama
-CPU akan mengambil data dari memori utama untuk di proses
-CPU akan mengirimkan intruksi ke ALU jika ada perhitungan aritmatika.
-CPU akan mengawasi kerja dari ALU .
-CPU akan menyimpan hasil proses ke memori utama.

  *Sistem Bus

Bus adalah Jalur komunikasi yang dibagi pemakai Suatu set kabel tunggal yang digunakan untuk menghubungkan berbagai subsistem. Karakteristik penting sebuah bus adalah bahwa bus merupakan media transmisi yang dapat digunakan bersama. Sistem komputer terdiri dari sejumlah bus yang berlainan yang menyediakan jalan antara dua buah komponen pada bermacam-macam tingkatan hirarki sistem komputer.

  *ALU

Alu adalah bagian dari CPU yang melakukan operasi aritmrika dan operasi logika berdasarkan intruksi yang telah ditentukan. Tugas utama dari ALU yaitu untuk melakukan seluruh perhitungan matematika yang terjadi sesuai intruksi program. Selain itu, ALU bertugas untuk melakukan keputusan dari sebuah operasi logika sesuai intruksi program. CPU Interconnections merupakan system koneksi yang menghubungjan komponen internal dari CPU, yaitu unit control, register, dan ALU serta bus ekternal CPU yang akan menghubungkan system lainnya.

   *Control Logic Unit

Control Unit (CU) adalah salah satu bagian dari CPU yang bertugas untuk memberikan arahan/kendali/ kontrol terhadap operasi yang dilakukan di bagian ALU (Arithmetic Logical Unit) di dalam CPU tersebut. Output dari CU ini akan mengatur aktivitas dari bagian lainnya dari perangkat CPU tersebut.
Pada awal-awal desain komputer, CU diimplementasikan sebagai ad-hoc logic yang susah untuk didesain. Sekarang, CU diimplementasikan sebagai sebuah microprogram yang disimpan di dalam tempat penyimpanan kontrol (control store). Beberapa word dari microprogram dipilih oleh microsequencer dan bit yang datang dari word-word tersebut akan secara langsung mengontrol bagian-bagian berbeda dari perangkat tersebut, termasuk di antaranya adalah register, ALU, register instruksi, bus dan peralatan input/output di luar chip. Pada komputer modern, setiap subsistem ini telah memiliki kontrolernya masing-masing, dengan CU sebagai pemantaunya (supervisor).

Tugas dari CU adalah sebagai berikut:

1.      Mengatur dan mengendalikan alat-alat input dan output.
2.      Mengambil instruksi-instruksi dari memori utama.
3.      Mengambil data dari memori utama kalau diperlukan oleh proses.
4.      Mengirim instruksi ke ALU bila ada perhitungan aritmatika atau perbandingan logika serta mengawasi            kerja.
5.      Menyimpan hasil proses ke memori utama.

  *Set Register

Register adalah alat untuk penyimpanan kecil yang memiliki kecepatan akses yang cukup tinggi yang dipakai untuk menyimpan data atau intruksi yang di proses. Memori ini hanya bersifat sementara, yang digunakan untuk menyimpan data pada saat pengolahan selanjutnya. Register bisa diibaratkan sebagai ingatan di otak, apabila melakukan pengolahan data manual, sehingga CPU dapat diibaratkan sebagai otak yang berisi ingatan-ingatan, satuan kendali yang mengatur semua kegiatan dan memiliki tempat untuk melakukan perbandingan dan perhitungan logika.

arsitektur set instruksi

    *Arsitek Set Instruksi

                    didefinisikan sebagai suatu aspek dalam arsitektur komputer yang dapat dilihat oleh para pemrogram. Secara umum, ISA ini mencakup jenis data yang didukung, jenis instruksi yang dipakai, jenis register, mode pengalamatan, arsitektur memori, penanganan interupsi, eksepsi, dan operasi I/O eksternalnya (jika ada).

1. Instruction set architecture (ISA) / arsitektur set instruksi
ISA meliputi spesifikasi yang menentukan bagaimana programmer bahasa mesin akan berinteraksi oleh computer. ISA menentukan sifat komputasional computer.

2. Hardware system architecture (HSA) / arsitektur system hardware
HAS berkaitan dengan subsistem hardware utama computer (CPU, system memori dan IO). HSA mencakup desain logis dan organisasi arus data dari subsistem.

     *Jenis Instruksi 

Ada dua bagian utama dalam arsitektur komputer :
1. Instruction set architecture (ISA) / arsitektur set instruksi ISA, meliputi spesifikasi yang menentukan bagaimana   programmer bahasa mesin akan berinteraksi oleh komputer. ISA menentukan sifat komputasional komputer.

2.Hardware system architecture (HSA) / arsitektur system hardware  HAS, berkaitan dengan subsistem hardware utama  komputer (CPU, system memori dan I/O). HSA mencakup  desain logis dan organisasi arus data dari subsistem.

     *Teknik Pengalamatan / Addresing

-Immediate Addressing (pengalamatan segera)
-Direct Addressing (pengalamatan lansung)
-Indirect Addressing (pengalamatan tak lansung)
-Register addressing (pengalamtan register)
-Register indirect addressing (pengalamatan tak lansung register)
-Displacement addressing

-Stack addressing

   *Desain Set Instruksi

Desain set instruksi merupakan masalah yang sangatkomplek yang melibatkan banyak aspek, diantaranya adalah:
1. Kelengkapan set instruksi
2. Ortogonalitas (sifat independensi instruksi)
3. Kompatibilitas :

   source code compatibility
   Object code Compatibility
   Selain ketiga aspek tersebut juga melibatkan hal-hal sebagai berikut :

a. Operation Repertoire
    Berapa banyak dan opera siapa saja yang disediakan, dan berapa sulit operasinya
b. Data Types
    Tipe/jenis data yang dapat olah
c. Instruction Format
   Panjangnya, banyaknya alamat,dsb.
d. Register
    Banyaknya register yang dapat digunakan
e. Addressing

    Mode pengalamatan untuk operand